(2)

Roll No.:

Total No. of Questions: 11]

[Total No. of Printed Pages: 4

PK-454

M.Sc. II Semester Mathematics (Reg./Pvt./ATKT) Examination June 2018 TOPOLOGY - II

Paper - III

Time Allowed: Three Hours]

[Maximum Marks : { Reg. - 85 | Pvt. - 100

Note: Attempt all questions.

All questions are compulsory.

Section - A

Objective Type Questions

Q.1. Choose the correct answer:

 $5 \times 2 = 10$

http://www.onlinebu.com

http://www.onlinebu.com

- i) A topological space X is a Hausdorff space is for every pair of distinct points x, y in X.
 - (a) there exists open sets U and V in X such that $x \in U$ and $y \in V$
 - (b) there exists disjoint open sets U and V in X such that $x \in U$ and $y \in V$
 - (c) there exists open sets U and V in X such that $x, y \in U \cap V$
 - (d) None of these
- ii) Every sequentially compact metric space
 - (a) is totally bounded
 - (b) has an \in -net for each \in > 0
 - (c) is compact
 - (d) all the above

YA18-701

PK-454

P.T.O.

__1__1

- iii) A topological space X is connected if it can not be represented as a union of
 - (a) two disjoint non-empty open sets
 - (b) two disjoint non-empty closed sets
 - (c) two non-empty open sets
 - (d) both (a) and (b)
- iv) A filter F on a set X is an ultrafilter if
 - (a) it is properly contained in any filter on X
 - (b) it is not properly contained in any filter on X
 - c) it contains any filter on X
 - (d) None of these
- v) The set of path homotopy classes in a space X.
 - (a) forms a group under the operation *
 - (b) forms a semigroup under the operation *
 - (c) forms a monoid under the operation X
 - (d) None of these

Section-B Short Answer Type Questions

 $5 \times 5 = 25$

Q.2. Prove that a topological space is a T₁-space if and only if each point is a closed set.

OR

What do you mean by C(X, R) separates points. If C(X, R) separates points, then show that X is a Hausdorff space.

YA18-701

PK-454

Contd...

(3)

Q.3. Prove that a topological space is compact if every basic open cover has a finite sub cover.

OR

Define locally compact space. Prove that any compact space is a locally compact space.

Q.4. Discuss product topology.

OR

Define connected space. Prove that the discrete two point space is disconnected.

Q.5. Suppose $S: D \rightarrow X$ is a net and F is a cofinal subset of S.gf S/F: $F \rightarrow X$ converges to a point x in X, then prove that x is a cluster point of S.

OR

Define convergence and limit of a net.

Prove that the map $\hat{\alpha}$ is a group isomorphism.

OR

If f and g are any two continuous maps of a space X into \mathbb{R}^2 , then prove that the map F(x, t) = (1-t)f(x) + tg(x) is a homotopy between them.

Section-C Long Answer Type Questions

 $5 \times 10 = 50$

Q.7. Prove that in a Hausdorff space, any point and disjoint compact sub space can be separated by open sets, in the sense that they have disjoint neighborhoods.

YA18-701

PK-454

P.T.O.

http://www.onlinebu.com

http://www.onlinebu.com

(4)

OR

Prove that every compact Hausdorff space is Normal.

Q.8. Prove that every closed and bounded sub space of the real line is compact.

OR

Prove that a metric space is sequentially compact if and only if it has the Bolzano-Weierstrass property.

Q.9. Prove that the product of any non-empty class of compact spaces is a compact space.

Prove that the product of any non-empty class of connected spaces is a connected space.

http://www.onlinebu.com

Q.10. Let A be a subset of a space X and let $x \in X$. Then prove that $x \in \overline{A}$ if and only if there exists a net in A which converges to x in X.

Prove that a topological space is a Hausdorff space iff no filter can converge to more than one point in it.

Q.11. Prove that the relations \approx and \approx p are equivalence relations.

OR

Prove that the fundamental group of S1 is isomorphic to the additive group of integers.

http://www.onlinebu.com Whatsapp @ 9300930012 YA18-701 Your old paper & get 10/-पुराने पेपर्स भैजे और 10 रुपये पार्य,

Paytm or Google Pay 社