The following matrix gives the pay off (in ♥) of different strategies S₁, S₂, S₃ against events N₁, N₂, N₃ and N₄:

Strategy	Nature			
	N ₁	N ₂	N ₃	N ₄
S ₁	4,000	- 100	6,000	18,000
S ₂	20,000	5,000	400	0
S ₃	20,000	15,000	- 2,000	1,000

Indicate the decision taken under the Pessimistic and Equal Probability approach.

Roll No.

DB-495

M. B. A. (FT) (Second Semester) EXAMINATION, 2012

MANAGEMENT SCIENCE

(CP-202)

Time: Three Hours

Maximum Marks: 80

Section - A

Note: Attempt any four questions. Each question carries 8 marks.

- 1. What are the guidelines for the formulation of Linear Programming Model ?
- 2. Write short notes on the following:
 - (i) Free Float and Total Float
 - (ii) Flow chart for solution of Assignment problem
- Determine an initial basic feasible solution to the following transportation problem by VAM method:

	D_1	D_2	D_3	D_4	Supply
S_1	21	16	15	3	11.
S ₂	17	-18	14	23	13
S ₃	32	27	18	41	19
Demand	6	10	12	15,	3

P-1

DB-495

- 4. Briefly explain 'Duality' in Linear Programming.
- 5. What are the rules to determine the Saddle point in Game Theory problems ?
- 6. Solve the following Assignment problem with the help of Hungarian method:

			Job	
	7	Α	В	С
	1	120	100	80
Workers	2	80	90	110
	3	110	140	120

Assign the jobs to workers, given the time taken for completion, in such a way that total time is minimum.

- 7. What is the basic difference between PERT and CPM ?
- 8. Consider the game with the following pay off table: '

		Player B	
		B_1	B ₂
Player A	A ₁	2	6
	A ₂	- 2	λ

- (a) Show that game is strictly determinable, whatever λ may be.
- (b) Determine the value of game.

Section - B

Note: Attempt any three questions. Each question carries 16 marks.

Explain the nature and scope of Management Science.
 How does it help in Decision-making?

Use the graphical method to solve the following LPP:Minimize:

$$z = 3x_1 + 2x_2$$

Subject to the constraints:

$$5x_1 + x_2 \ge 10$$

 $x_1 + x_2 \ge 6$
 $x_1 + 4x_2 \ge 12$

and $x_1, x_2 \ge 0$.

3. A small project has 7 activities, the time estimates are listed below:

Activity	Estimated duration (weeks)			
ricumy	Optimistic	Most Likely	Pessimistic	
1-2	1	1	7	
1-2 $1-3$	1	4	7	
1-4	2	2	8	
2-5	1	1	1	
3-5	2	5	14	
46	2	5	8	
5-6	3	6	15	

- (a) Draw the network diagram of activities in the project.
- (b) What is the expected project length?
- 4. What do you understand by the problem of sequencing? Discuss the various aspects of data required to formulate the problem of sequencing two jobs on 'm' machines.

www.onlineBU.com

DB-495