Computer Oriented Numerical Methods - 2013

Note: Attempt all five questions. Assume suitable data if any misprint missing data.

- Q.I. Objective types questions/Short answer type questions-
 - (i) Iterative formula to find N is-

(a)
$$\frac{1}{2} \left(xu + \frac{N}{xn} \right)$$
 (b) $\frac{1}{3} \left(xn + \frac{N}{xn} \right)$ (c) $\frac{1}{2} \left(xn + \frac{\sqrt{N}}{xn} \right)$ (d) $\frac{1}{3} \left(xn + \frac{\sqrt{N}}{xn} \right)$

(ii) Find the missing value of the given data-

x: 1 2 3 4 5 f(x): 7 - 13 21 37

onlineBU.com

onlineBU.com

- (iii) If $\int_{1}^{1} \frac{1}{1+x^2 d_n} = 0.785395$ then find the value of π by using it.
- (iv) The Range-Kutta second order method is also known as-
 - (a) Picard method
- (b) Euler method
- (c) Euler Modified method
- (d) Improved Euler method
- (v) Write the formula of Karl Pearson's coefficient of correlation.

Note: Attempt any three parts from question 2 to 6. (each of 5 marks)
Q.II.(a) Using Bisection method find a root of the equation $x^3 - 4x - 9$ = 0 in four stages.

- (b) Evaluate √12 to four decimal place by Newton's Iterative method.
- (c) Using Newton Raphson's method find the real root of the equation $3x = \cos x + 1$
- (d) Solve the equations by Gauss-elimination method 3x + y z = 3, 2x 8y + z = -5 and x 2y + 9z = 8
- Q.III(a) The population of a town is as follows:

Year 1921 1931 1941 1951 1961 1971 Population (in lakhs) 20 24 29 36 46 51 Estimate the increase in population during the period 1955 to 1961.

- (b) f(20) = 24, f(24) = 32, f(28) = 35, f(32) = 40, find the value of f(25) by Basset's formula.
- (c) Find the unique polynomial P(x) of degree such that P(1) = 1, P(3) = 27, P(4) = 64.
- (d) Apply Newton's divided difference formula to find the value of f(8) if F(1) = 3, f(3) = 31, f(6) = 223, f(1) = 1011 and f(1) = 1343.
- Q.IV(a) Find f(4) from the following data-

X: 0 2 5 1F(x) 0 8 125 1

(b) Evaluate $\int_0^1 \frac{dx}{1+x^2}$ by using Simpson's both rule. Also find the value of π in each cases.

- .	
(c)	Evaluate $\int_{0}^{1} \frac{dx}{1+x}$ by dividing the interval of integration into 8
	equal parts. Hence find loge 2 approximately.
(d)	Evaluate $\int_{A}^{5-2} \log_e x dx$ by using Weddl's rule.
Q.V.(a	Solve $\frac{dy}{dx} - x + y$ y(0) = 0 changing the step length 0.2 for
4 .	y(1.2) by Euler's method.
(b)	Using Record's method obtain the value of y for $x = 0.2$ correct
Á	to five places of decimal. Give $\frac{dy}{dx} = x - y$ with $y(0) = 1$.
(c)	Using Taylor's series method to obtain approximate value of y
• ;	at $x = 0.2$ for the differential equation $\frac{dy}{dx} = 2y + 3e^{x}$ with $y(0)$
••	= 0.
(d)	Using Runge Kutta method to find y, when $x = 1.2$ in step of 0.1
	give that when $x = 1.2 M$ step of 0.1 give that $\frac{dy}{dx} = x^2 + y^2$ and
Q.VI(y(1) = 1.5 (a) Find the correlation coefficient and the equations of regression
	lines for the following values of X only-
	x 1 2 3 4 5
	y 2 5 3 8 7
(b)	From the following data regression equation
	8x - 10y + 66 = 0
	40x - 18y = 214
· 	and $\sigma x = 3$ find-
	(i) mean value of x and 4.
	(ii) σ4
4	(iii) Coefficient of correlation.
(c)	Find the coefficient of correlation for the following table-
	X 10 14 18 22 26 30
	Y 18 12 24 6 30 36
(d)	In a partially destroyed lab, only the equation of regressions
	$7x - 16y + 9 = 0$ and $5y - 4x - 3 = 0$ are available find \overline{x} , r
·· .	and \overline{y} .